Анатолий Крылов. Критерии оценок (физиологические тесты)

Категория: Служебная подготовка Опубликовано 07 Апрель 2016
Просмотров: 2621

Анатолий Крылов. Критерии оценок (физиологические тесты)Анатолий Крылов. Критерии оценок (физиологические тесты)

1. Тесты на работоспособность. Физиологические тесты на работоспособность — это диагностические процедуры для определения физической работоспособности; подобно многим диагностическим процедурам, они несут некоторый элемент риска.

В то время, как эргометрические тесты с максимальной нагрузкой, выполняемые до момента предельного физического утомления, представляют незначительный риск для здорового человека. Мы ограничиваемся тремя тестами, наиболее часто используемыми для оценки работоспособности при деятельности, требующей выносливости. Эти пробы отвечаютустановленным тестовым критериям.

1.1. Максимальное потребление кислорода (Vo2max)
Максимальное потребление кислорода служит показателем аэробной работоспособности организма. Его определяют в условиях непрерывной или ступенчато увеличиваемой эргометрической нагрузки. Потребление кислорода сначала равномерно нарастает, а затем выравнивается при переходе в состояние истощения (максимальное потребление кислорода). Среднее потребление кислорода в области стабильного уровня для взрослого мужчины при массе тела 70 кг составляет около 3,0 л/мин, или 43 мл *мин-1*кг-1. Интенсивной тренировкой выносливости можно довести максимальное потребление кислорода до уровня, вдвое превышающего эту величину.



1.2. Физическая работоспособность (PWC170 или W170)
Этот тест также проводится при непрерывной или ступенчато возрастающей работе на эргометре; критическим показателем служит работа в тот момент, когда частота пульса достигает 170 ударов в минуту. Поскольку максимальная частота сокращений сердца снижается с возрастом, данные, получаемые для пожилых людей, либо экстраполируют относительно 170 мин-1, либо выражают относительно более низкой стандартной частоты, например, 130 мин-1 (т. е. PWC130). Размерность результата пробы — ватты.
Достоверность этого теста та же, что и определения максимального потребления кислорода. Хотя PWC-тест менее надежен, чем измерение максимального потребления кислорода, он особенно пригоден для массовых обследований, так как экономичен с точки зрения затрат времени и средств.
Для лиц в возрасте от 20 до 30 лет получены следующие средние величины: для женщин — 2,3 Вт/кг, для мужчин — 2,8 Вт/кг массы тела. Интенсивной тренировкой выносливости можно удвоить эти величины.



1.3. Частота сокращений сердца
Следует отметить, что при динамической работе с постоянным коэффициентом полезного действия частота сокращений сердца пропорциональна как потреблению кислорода, так и выполняемой нагрузке. При изменении коэффициента полезного действия сохраняется тесная связь между частотой сокращений сердца и потреблением кислорода, а связь между частотой сокращений сердца и выполняемой нагрузкой утрачивается. Во время легкой работы с постоянной нагрузкой частота сокращений сердца возрастает в течение первых 5—10 мин. и достигает постоянного уровня; это стационарное состояние сохраняется до завершения работы даже в течение нескольких часов.
Чем больше напряжение, тем выше уровень плато. Во время тяжелой работы, выполняемой с постоянным усилием, такое стабильное состояние не достигается; частота сокращений сердца увеличивается по мере утомления до максимума, величина которого неодинакова у отдельных лиц (подъем, обусловленный утомлением). Различие в характере изменений сердечной деятельности при легкой и тяжелой работе продемонстрировано в опытах, длительность которых доходила до 8 ч.
Таким образом, по изменениям частоты сокращений сердца можно различить две формы работы: легкая, неутомительная работа — с достижением стационарного состояния, и тяжелая, вызывающая утомление работа — с подъемом, обусловленным утомлением.
Любую работу (выполнение любого вида упражнений), можно оценить, исходя из энергетических затрат на ее выполнение, так как любое движение оценивается как изменение кинетической или потенциальной энергии изменения положения и рассчитывается по известным формулам: Работа: А= F-AS [Дж], где соответственно:
F — сила [Н]; AS — перемещение [м] Пример: работа по подъему 30 кг на высоту, равную 0,5 метра, будет равна
А = F·AS = 30 кг·9,81 м/с2·0,5 м = 147,15 Дж, если этот подъем осуществлен за 2 сек., то мощность, развитая при этом, будет равна
N — F/1 = 147,15 Дж / 2с = 73,575 Вт

Анатолий Крылов. Критерии оценок (физиологические тесты)
Рис. 1. Изменение частоты сокращений сердца при динамической работе постоянной интенсивности. Темным обозначена «пульсовая сумма восстановления» — общее число ударов свыше базального уровня за период восстановления.

Даже после завершения работы частота сердечных сокращений изменяется в зависимости от имевшего место напряжения. После легкой работы она возвращается к первоначальному уровню в течение 3–5 мин.; после тяжелой работы период восстановления значительно дольше — при чрезвычайно тяжелых нагрузках он достигает нескольких часов. Другим критерием может служить общее число пульсовых ударов свыше базального уровня (начальной частоты пульса) в течение периода восстановления (пульсовая сумма восстановления). Этот показатель служит мерой мышечного утомления ^следовательно, отражает нагрузку, потребовавшуюся для выполнения предшествующей работы.
Когда следят непосредственно за сердечной деятельностью (путем измерения ЭКГ или давления), нужно использовать термин «скорость сокращений сердца»; термин же «частота пульса» применяют, когда регистрируют периферический пульс. Эти две величины различаются только при воздействиях на сердечную деятельность.
Пример. Непосредственно перед стартом на 3 км у специалиста была замерена частота пульса в покое (предположим, 72 удара в минуту). Сразу же после забега у него замеряется частота пульса после нагрузки. При этом существует важная особенность — частота пульса замеряется в течение того времени, пока не станет равной исходной, т. е. 72 удара в минуту.
Предположим, что восстановление произошло за б минут, при этом показатели были следующими:

Анатолий Крылов. Критерии оценок (физиологические тесты)
Не нужны сложные приборы, не нужен квалифицированный медицинский персонал, практически не важен вид нагрузки (бег, отжимания, подъем тяжестей и т. д.) — важны лишь объем работы и соответствующая ему итоговая пульсовая сумма восстановления. Создать стандартные условия выполнения той или иной работы для любого командира — не проблема, проверить показатели и записать их — тем более. Через определенный период времени после этапа подготовки провести повторный контроль тоже не проблема. Информативность — полная.
Ударный объем
Ударный объем сердца в начале работы возрастает лишь на 20–30 %, а после этого сохраняется на постоянном уровне. Он немного падает лишь в случае максимального напряжения, когда частота сокращений сердца столь велика, что при каждом сокращении сердце не успевает целиком заполниться кровью. Как у здорового спортсмена с хорошо тренированным сердцем, так и у человека, не занимающегося спортом, сердечный выброс и частота сокращений сердца при работе изменяются приблизительно пропорционально друг другу, что обусловлено этим относительным постоянством ударного объема.
При динамической работе артериальное кровяное давление изменяется как функция выполняемой работы. Систолическое давление увеличивается почти пропорционально выполняемой нагрузке, достигая приблизительно 220 мм рт. ст. (29 кПа) при нагрузке 200 Вт.

Диастолическое давление изменяется лишь незначительно, чаще в сторону снижения. Поэтому среднее артериальное давление слегка повышается. Верхний предел нормального увеличения кровяного давления при велоэргометрии (100 Вт) составляет 200/100 мм рт. ст. в положении сидя и 210/105 мм рт. ст. в положении лежа (метод RR).
В системе кровообращения, функционирующей под низким давлением (например, в правом предсердии), давление крови во время работы увеличивается мало; отчетливое его повышение в этом участке является патологией (например, при сердечной недостаточности).

Аэробно-анаэробный переход и анаэробный порог
При увеличении эргометрической работы полезно измерять уровень нагрузки, при котором концентрация лактата в крови превысит величины 2 и 4 ммоль/л (начало перехода и порог соответственно). Результат этого теста более информативен, чем максимальное потребление кислорода при длительной (порядка часов) работе, требующей выносливости. У мужчин в возрасте 20–30 лет аэробно-анаэробный переход достигается при нагрузке порядка 1,25 Вт/кг, а анаэробный порог — приблизительно при 2,5 Вт/кг массы тела. Нагрузка, при которой достигается анаэробный порог, выраженная в процентах от нагрузки, при которой потребление кислорода становится максимальным, характеризует зависимые от тренировки процессы адаптации в мышцах (состояние тренированности). Эта величина у нетренированных лиц составляет около 50–60 %, а у высоко тренированных в видах спорта, требующих выносливости, — около 80 %.

Значение массы тела
Результаты тестов на работоспособность часто выражают с учетом массы тела (относительные величины). Однако это обобщение непригодно для оценки индивидуальных случаев; следует принимать во внимание требования, предъявляемые конкретной задачей. Это необходимо по следующим причинам.
Когда человек перемещает только массу собственного тела, физиологические параметры работы у разных лиц можно наилучшим образом сопоставить, соотнеся их с массой тела.
Для случая переноски тяжестей полезнее выражать результаты по отношению к абсолютной работоспособности или к общей массе (масса тела плюс масса груза).
Если необходимо оценить работоспособность мускулатуры, предпочтительно соотнести результаты с массой мышц (с которой коррелирует «безжировая масса тела»).

Интерпретация тестов на работоспособность
После того как установлены надежность и достоверность теста, можно делать точные и информативные выводы на основе его результатов, однако существуют два ограничения. Строго говоря, результат теста применим только к тому виду работы, который подвергается тестированию. Выводы о работоспособности при других нагрузках оправданны только в том случае, если факторы, определяющие характер работы, в значительной степени сходны, причем можно (следует) ожидать, что такой перенос всегда будет сопровождаться потерей достоверности. Результаты теста относятся только к работоспособности в момент проведения пробы.
Анализ пригодности каждого из вышеперечисленных тестов проводится исходя из критерия (условия) доступности (возможности проведения) в условиях войсковой части при сохранении максимально возможной информативности, решение за командиром (руководителем подготовки).

 



Нагрузки на организм специалиста в зависимости от их вида

Анатолий Крылов. Критерии оценок (физиологические тесты)

Упражнения, когда действующей нагрузкой выступает масса тела самого спортсмена, и действия, направленные на сохранение равновесного положения тела, находящегося под действием силы тяжести. При сохранении положения тела, человеку приходится уравновешивать не только силу тяжести, но и другие силы. Сточки зрения задачи уравновешивания сил можно выделить три вида статической работы мышц (рис. 6.1).
На схеме спортсмен, удерживающий «угол», одновременно выполняет следующие виды работ:
удерживающая работа — против момента силы тяжести (группа мышц 1); моментами сил тяги мышц уравновешены моменты силы тяжести звеньев;
укрепляющая работа — против сил тяжести, действующих на разрыв; силы мышечной тяги укрепляют сустав, принимают на себя нагрузку (группа мышц 2);
фиксирующая работа — против сил тяги мышц-антагонистов и других сил; силы мышечной тяги лишают звено возможностей движения, действуя друг против друга по направлению, но совместно — по задаче (группа мышц 3).
Аналогично можно рассмотреть упражнения, связанные с отжимом от опоры, например, подъем тела из упора лежа, и подобные им.
Строго говоря, согласно биомеханике, все движения человека (или его биокинематических звеньев) условно можно разделить на преодолевающие и уступающие.
В преодолевающих движениях суммарная тяга мышц направлена в сторону движения звена, в уступающих — в противоположную сторону.
Отсюда — движения человека могут выполняться с преодолевающей (положительной) или уступающей (отрицательной) работой мышц. Примером преодолевающей (положительной) работы может служить поднимание штанги. При этом мышцы укорачиваются, преодолевая силы сопротивления, приложенные к звеньям (штанге). Такие движения раньше называли активными; пассивными же считали движения, выполняемые без активного сокращения мышц, например, при помощи внешних для человека сил (опускание штанги под действием ее веса и т. п.).
Следует отметить, что в этом примере якобы «пассивные» движения на самом деле таковыми не являются, так как при этом движении (опускание штанги под действием ее веса) спортсмен напряжением мышц-антагонистов тормозит или останавливает ее движение, вызванное внешними для него силами (сила тяжести штанги при опускании ее на помост). В таких случаях антагонисты совершают уступающую (отрицательную) работу (растягиваясь, они как бы уступают движущим внешним силам), причем совершают иногда огромную работу, при которой их активность (в биологическом смысле) очень велика. Поэтому их движения нецелесообразно называть пассивными, а правильнее называть уступающими. Не следует смешивать понятия «активные силы» в смысле механическом (способные вызвать движение) и в смысле биологическом (тяги мышц). Правильнее делить движения на преодолевающие (с положительной работой мышц) и уступающие (с отрицательной работой мышц). И те и другие движения активные. Пассивными же следует называть лишь движения без активного участия мышечных сил (свободное падение, пассивное «падение» расслабленной руки и т. п.), при которых действительно мышцы никакой роли не играют.
Таким образом, в преодолевающих движениях главными источниками движущих сил служат только мышечные тяги, хотя им могут помогать и иные силы. Тормозящие силы могут быть весьма разнообразными:
• в упражнениях с отягощением — их вес и силы инерции;
• в упражнениях с эспандером — силы его упругой деформации;
• в упражнениях с сопротивлением партнера — вес и сила инерции тела партнера, его мышечные силы;
• в упражнениях без снарядов — вес и силы инерции собственных частей тела и даже тяги своих мышц-антагонистов.
В уступающих движениях источниками движущих сил могут быть любые силы, а тормозящими служат преимущественно тяги мышц-антагонистов.
При верхней опоре приближение к ней преодолевающим движением выполняется по механизму притягивания; движение в обратном направлении — уступающее (например, опускание вниз). Возбужденная мышца напрягается и, если может преодолеть сопротивление, сокращается, сближая при этом места прикрепления; сближаются два звена, соединенные мышцей.
Притягивание — способ выполнения мышцами положительной работы.
При верхней опоре звенья, соединенные с подвесом (перекладиной, уступом скалы и т. п.), — опорные, они чаще всего остаются неподвижными. Остальные звенья тела подвижные, они перемещаются относительно опорных звеньев и друг друга.
Рассмотрим упражнение подтягивания на перекладине, являющейся верхней опорой.
Общий механизм притягивания при верхней опоре схематически состоит в следующем (рис. 6.2).

Анатолий Крылов. Критерии оценок (физиологические тесты)

Силой тяжести опорных звеньев (кистей рук), закрепленных на верхней опоре (перекладине), как и силой тяжести схематически изображенных звеньев с пружиной (предплечье и плечо), можно пренебречь. Мышца (на рисунке изображена как растянутая пружина), соединяющая подвижные звенья с опорными, под действием силы веса подвижных звеньев (тела) (Р) напряжена. Ее сила тяги приложена к рычагам и не позволяет им опуститься вниз: сила F вызывает равное и противоположное по направлению противодействие реакции опоры (Rct). Сила F" равна по модулю силе Р (как действие и противодействие). В этом исходном положении движения еще нет. Чтобы вызвать притягивание подвижных звеньев к верхней опоре, необходимо увеличить напряжение мышцы (приращение силы тяги соответственно AF' и AF"), тогда сила +А F" вызовет ускорение (+а) подвижных звеньев, направленное вверх; появится направленная вниз сила инерции (Fm), приложенная к рычагам. Это обусловит возникновение динамической составляющей реакции опоры (R). Сила+А F" и представляет собою ускоряющую силу, вызывающую притягивание. Центр масс подвижных звеньев получает ускорение. Реакция опоры как реакция связи движения не вызывает, движущей силой она не является, но без нее изменение движения ЦМ невозможно. Источником же энергии движения служит мышца; ее сила тяги (+АF') для подвижных звеньев — сила внешняя. Следовательно, закон сохранения движения ЦМС соблюдается.
Итак, движение по способу притягивания происходит благодаря увеличенному напряжению мышц, которые ускоряют своей тягой подвижные звенья, сближают их с опорными.
Под действием внешних сил тело человека может совершать уступающие действия, отдаляясь от верхней опоры.

При этом напряжение мышц уменьшается. Возникает избыток силы веса над силой тяги мышц. Направленное вниз ускорение подвижным звеньям придает сила, представляющая собой разность между силой веса тела и силами тяги мышц вверх. Если бы сила веса тела вызывала ускорение, то было бы просто свободное падение подвижных звеньев вниз.
Под действием этой ускоряющей силы подвижные звенья, опускаясь, растягивают мышцы. Работа, которую они совершают на пути своего действия, отрицательная, поскольку силы направлены в сторону, противоположную движению. Положительную работу совершает сила, равная избытку силы веса подвижных звеньев над тягой мышц, приложенной к рычагам. Уступающее движение под действием силы веса (постоянной силы) происходит вследствие уменьшения момента силы мышцы. Ускоряющей силой служит избыток силы веса над силой тяги мышц. При ускорении возникает сила инерции, направленная вверх, и уменьшается общая реакция опоры.
При нижней опоре отдаление от нее преодолевающим движением осуществляется по механизму отталкивания; движение в обратном направлении — уступающее (например, приседание).
Примером движений при верхней опоре может служить подтягивание в висе и опускание. Первая часть этого движения происходит по механизму притягивания к верхней опоре. Необходимо установить, какие движения в суставах являются преодолевающими и работа каких мышц их вызывает. Коль скоро в исходном положении руки вытянуты вверх, то пояс верхних конечностей поднят вверх, лопатки отведены от позвоночного столба и повернуты нижними углами вперед. Ключицы и лопатки при подтягивании будут опускаться тягой широчайших мышц спины и больших грудных мышц, приводить и поворачивать лопатки будут ромбовидные мышцы. В обоих движениях участвуют нижние части трапециевидных мышц. Одновременно широчайшие мышцы спины и трехглавые мышцы плеча разгибают его, а двуглавые мышцы плеча и другие сгибатели сгибают предплечье. Опускание в положении виса выполняется при уступающей (отрицательной) работе тех же самых мышц с перемещением подвижных звеньев в обратном направлении. При уступающей работе мышцы в состоянии развить большее напряжение, чем при преодолевающей. Поэтому уступающее движение при том же отягощении выполнить легче.
Рассмотрим механизм выполнения упражнений (движений), связанных с нагрузкой, направленной в противоположном направлении, т. е. когда биокинематические звенья совершают работу, связанную с механизмом отталкивания, например, выход из приседа при жиме штанги.
При отдалении звеньев друг от друга силой тяги мышцы, места ее прикрепления сближаются, приближение одного конца двуплечевого рычага сопровождается отдалением другого его конца. Отталкивание — способ совершения мышцами положительной работы.
Обычно связь опорных звеньев с нижней опорой бывает неудерживающей; стопу, например, прижимает к грунту только вес верхних звеньев тела.
Общий механизм отталкивания при нижней опоре схематически состоит в следующем (рис. б. З).

Анатолий Крылов. Критерии оценок (физиологические тесты)

Мышца (на рисунке она условно обозначена как сжатая пружина) своим напряжением не позволяет весу верхних звеньев согнуть систему рычагов. Сила F поддерживает верхние звенья, уравновешивает силу их веса Р. Сила F» через опорные звенья давит на опору; онауравновешена противодействием опоры.
Чтобы вызвать отталкивание подвижных звеньев от нижней опоры, необходимо увеличить напряжение мышцы (приращение силы тяги соответственно + AF и + AF2). Тогда сила + AF2 вызовет ускорение подвижных звеньев (+а), направленное вверх, появится сила инерции (Fmh) как не уравновешивающее сопротивление, направленная вниз, приложенная к верхней точке рычагов. Это обусловит появление динамической составляющей опорной реакции (R). Сила + AF2 и есть ускоряющая сила, под действием которой начинается отталкивание. Так же, как и в механизме притягивания, реакция опоры как внешняя сила совершенно необходима, но не она вызывает движения. Человек при отталкивании, как и при притягивании, является самодвижущейся системой; источник энергии движения — внутренний. Твердое тело может перемещаться только под действием внешней силы. А тело человека представляет собой систему тел (звеньев), каждое из которых изменяет свое положение под действием всех приложенных именно к нему сил. Таким образом, движение по механизму отталкивания происходит благодаря увеличению напряжения мышц: они, сближая свои концы, отдаляют подвижные звенья от опорных.

Уступающее приближение к нижней опоре
Как и в случае уступающего отдаления от верхней опоры, при уступающем приближении к нижней опоре мышцы совершают работу под действием верхних звеньев тела. Избыток действия силы веса относительно действия силы тяги мышц служит ускоряющей силой, приближающей тело к опоре. Как и при любом ускорении, возникают силы инерции и изменяется реакция опоры. Примером движений при нижней опоре может служить сгибание и выпрямление рук в упоре лежа. Очевидно, что движение ЦМ тела вниз при нижней неудерживающей опоре может осуществляться под действием силы тяжести только подвижных частей тела. Голова, шея, туловище и ноги фиксированы во всех суставах напряжением мышц-антагонистов и движутся как вниз, так и вверх в виде единого целого. Лопатки фиксированы относительно грудной клетки. Основные движения в суставах при сгибании рук — разгибание в плечевых и сгибание в локтевых и лучезапястных суставах — происходят при уступающей работе мышц-антагонистов. Выпрямление рук в упоре лежа, естественно, представляет собой преодолевающее движение, протекающее с сокращением мышц, которые ранее (в примерах, описанных выше) выполняли уступающую, теперь совершают положительную преодолевающую работу. Вследствие малой скорости и относительно большой длительности движения ускорения, а значит, и силы инерции будут невелики.
Упражнения, когда действующей нагрузкой выступают не масса тела самого спортсмена, а дополнительные отягощения, приложенные к его биокинематическим звеньям, например штанга, гантели, эспандеры и т. п.
Рассмотрим особенности кинематики движения биокинематических звеньев, например при осуществлении жима штанги из положения лежа. При этом кинематика и динамика взаимодействия биомеханической системы с опорой характеризуются некоторыми особенностями. На рис. 6.4 представлена биокинематическая пара, соединенная подвижно (в плечевом суставе) с опорой. Увеличение угла ф между звеньями этой пары приводит к противоположно направленным поворотам звеньев: звено, ближнее к опоре, повернется налево (со,), а звено, дальнее от опоры, повернется направо (со2). При этом ЦМ пары звеньев получит движение вдоль радиуса (VR), соединяющего его с осью внешнего шарнира (опорой), а также в перпендикулярном ему направлении (VT) в левую сторону. Вся пара вращается в направлении ближнего к опоре звена (со3).

Анатолий Крылов. Критерии оценок (физиологические тесты)

Если при этом не приложен момент внешней силы, то происходит взаимная компенсация двух составляющих кинетического момента относительно фиксированной оси (опоры): кинетический момент, образуемый вращательным движением звеньев относительно их ЦМ, направлен в одну сторону, и кинетический момент, обусловленный перемещением самих ЦМ относительно фиксированной оси — в другую. Сгибательно-разгибательные движения спортсмена при взаимодействии с опорой вызывают ряд кинематических следствий сложного характера. Как уже говорилось, при паре угловых скоростей, т. е. равенстве угловых скоростей звеньев, движущихся разнонаправлено, последующее звено (или группа звеньев) получает поступательное движение
Динамика взаимодействия системы звеньев с опорой определяется особенностями передачи и использ·ования энергии. Повышение жесткости мягких тканей в соединениях (суставная жесткость) обеспечивает более полную передачу энергии. Это особенно проявляется при различных отталкиваниях, близких по особенностям и взаимодействиям. С повышением жесткости биомеханическая система приближается к технической механической системе, что уменьшает потери энергии.
Потери энергии при ее передаче по биокинематической цепи (демпфирование ) зависят от преобразования механической энергии звеньев в другие виды и ее рассеяния, от степени произвольного напряжения мышц, от величины их растягивания и других факторов.

Авторизация

Реклама